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The retina, the neuronal layer at the back of the eyeball, is one of the
most studied parts of the central nervous system, yet many

aspects of its function remain a mystery. Does the retina
extensively process incoming light signals before

sending them to the brain, or does it serve
primarily as a passive conduit?
Experiments measuring retinal

responses and subsequent detailed com-
puter modeling have led to a novel con-

jecture, which may be significant in
designing a sophisticated retinal prosthesis.

Clinical studies are under way to
test the first primitive visual pros-
thetics. Prototype devices consist of
microelectrodes implanted in the retina
and stimulated by a video system embedded
in a special pair of glasses. The prosthetic
stimulates the array of ganglion cells on the
inner surface of the retina either directly or by
activating their synaptic inputs, thereby causing them to fire
action potentials that propagate along the optic nerve to processing 
centers in the brain. Creating firing patterns that match those produced 
in the healthy retina by natural visual stimuli is the foremost challenge 
confronting the development of a retinal prosthesis.
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Some forms of adult-onset blind-
ness are characterized by a mas-
sive loss of photoreceptors but a

relative sparing of fibers in the optic
nerve. Recent clinical studies suggest
that patients suffering from such visu-
al impairments could benefit from a
prosthetic device capable of stimulat-
ing the remaining retinal neurons and
thereby mimicking the function of the
missing rods and cones. A retinal
prosthesis is illustrated conceptually
on the opening page of this article.
The light transduction role of the
damaged or missing photoreceptors is
performed by a video camera attached
to a pair of specially configured eye-
glasses worn by the patient. The video
image is processed and then transmit-
ted, through a cable or some form of
wireless telemetry, to a multielectrode
array attached to the inside surface of
the retina. Stimulating the multielec-
trode array in an approximately one-
to-one spatial correspondence with the
video image will hopefully produce
patterns of neural activity in the optic
nerve similar to those produced by an
undamaged retina during normal
vision. Preliminary studies, in which a
crude prototype of the above design
was used, yielded encouraging results
(Humayun et al. 2003). Other strate-
gies for a retinal prosthesis—particu-
larly the insertion of a standalone
photodiode array between the retina
and the back of the eye—are being
investigated as well. For a recent

review, see Margalit et al. (2002).
A consortium of DOE laboratories

is working on a number of difficult
technical problems that must be
solved before a functional retinal pros-
thesis becomes widely available. Here,
we describe computer modeling stud-
ies that have two goals regarding the
optimal design of a retinal prosthesis:
(1) to discover how visual information
is processed and encoded by retinal
circuitry, discussed in the main article,
and (2) to improve our understanding
of how retinal components, at the
level of individual cells and across
interconnected circuits, are activated
by specific spatiotemporal patterns of
electrical stimulation, discussed in the
box, “Modeling Stimulation by a
Retinal Prosthesis” on page 122.
Understanding how the retina encodes
visual information and how surviving
elements in the diseased retina react to
external stimulation is critical to
achieving maximal therapeutic benefit
from a prosthetic device.

Attempts to develop computer
models of the retina benefit greatly
from a large existing knowledge base.
The anatomy and physiology of the
retina have been extensively studied,
especially in comparison with many
other parts of the central nervous sys-
tem. Moreover, the inputs and outputs
of the retina have been well character-
ized. Because it receives no major
feedback from the brain, the retina
can be studied as a standalone circuit.
Thus, we use experimental data to
constrain our computer simulations of
the retina to an extent not possible
when modeling more central brain
areas. Nevertheless, our studies may
provide valuable insights into the
design of neural prosthetics for other,
less-accessible brain regions and may
suggest new image-processing strate-
gies for computer-vision systems.

The Retina

The retina consists of several lay-
ers of cells at the back of the eye that
collectively are responsible for the
transduction and preprocessing of
visual signals (Figure 1). In photomi-
crographs of retinal cross-sections,
several processing layers can be dis-
tinguished. In patients with certain
forms of adult-onset blindness, the
outermost photoreceptor layer is near-
ly or completely degenerated, whereas
some fraction of neurons in the inner
retina, particularly the ganglion cells
whose axons make up the optic nerve,
are spared to some extent. Such
patients are potential candidates for a
retinal prosthesis. However, before a
prosthetic device can be optimally
used, it is vital to understand how
visual information is encoded in the
pattern of electrical impulses traveling
down the optic nerve.

The output of the retina, and
indeed of most neurons in the central
nervous system, cannot be classified
in conventional electrical engineering
terms as either analog or digital;
rather, neuronal output consists of a
temporal sequence of impulses, or
spikes (see Figure 2). It is therefore
vital to understand how visual infor-
mation is encoded in spike trains trav-
eling down the optic nerve. In the
absence of stimulation, most ganglion
cells fire spikes randomly at a back-
ground rate much lower than their
maximum firing frequency. The con-
ceptual diagram in Figure 2 depicts
the spike trains from two clusters of
neighboring ganglion cells. Clusters
are indicated rather than single gan-
glion cells both to justify the high sig-
nal-to-noise ratio illustrated in the fig-
ure and to take into account the spa-
tial convergence of optic-nerve fibers
onto target neurons deep within the
brain. When a cluster is stimulated by
a small spot roughly equal in size to
the excitatory portion of the receptive
field (the local region of the visual
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space to which the indicated group of
cells best respond), the firing rate, that
is, the average number of spikes per
time interval, increases markedly in
proportion to the contrast between the
spot’s intensity and the light intensity
immediately surrounding the spot.
Regardless of the stimulus intensity,
however, the timing of the individual
spikes in response to a small spot
remains more-or-less randomly dis-
tributed such that the spikes elicited
by two small spots will typically be
entirely uncorrelated. The observation
that the mean firing rate is proportion-
al to the stimulus intensity while the
spikes themselves are distributed ran-
domly in time is the basis for the rate-
code hypothesis, which posits that
information is transmitted only by 
the mean number of spikes per time
interval irrespective of their precise
timing.

There is evidence, however, that
the rate-code hypothesis is incom-
plete. As the size of the two spots
increases, the total number of spikes
per time interval is reduced somewhat

by lateral inhibition, but the most
striking effect is the appearance of an
oscillation in the firing rate, causing
spikes to occur in relatively narrow
clusters, or bursts. The phase of the
underlying oscillation drifts randomly
over time, so that the bursts evoked
by separate spots will rapidly become
uncorrelated even if both sets of neu-
rons are modulated at a similar fre-
quency. Remarkably, when the two
groups of neurons are stimulated by a
single large spot, the groups’ underly-
ing oscillations become strongly
phase-locked, suggesting that the rela-
tive timing of spikes in the optic
nerve can convey information about
the spatial connections of features in
the visual field. Such information is
not conveyed by the local firing rate.
To better illustrate the above encoding
principles, it is useful to examine real
physiological data. Figure 3 shows an
intracellular recording from a retinal
ganglion cell in response to a sinu-
soidally varying light intensity. In
Figure 3(a), the intensity of the light
is shown as a function of time.

Conceptually, the recorded trace in
Figure 3(b) can be divided into two
parts: a subthreshold membrane
potential, exhibiting an approximately
sinusoidal modulation, and action
potentials, or spikes, which are the
large impulses riding on top of the
subthreshold membrane potential.
This potential is not available to the
brain because it represents the analog
component of the response that is
most directly proportional to the inci-
dent light intensity. Only the spikes
riding on top of this potential are
transmitted through the optic nerve to
relay nuclei within the brain. Because
each spike is, to a first approximation,
identical to every other spike, infor-
mation can be conveyed only by the
temporal sequence of the spikes. To
reveal the information embedded in
experimentally recorded spike trains,
neuroscientists typically average over
many stimulus trials. The response
histogram, obtained by combining
spike trains from many stimulus trials,
shows that the average firing rate of
the recorded ganglion cell is roughly
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Figure 1. The Retina
(a) Located at the back of the eyeball, the retina consists of many types of neurons arranged in a layered structure. The light-
sensitive cells (photoreceptors—rods and cones) are in the outermost layer, farthest from the incoming light. In front of the pho-
toreceptors are neurons that perform specialized processing. At the innermost layer are ganglion cells whose axons make up
the optic nerve. (b) A photomicrograph of a cross section of the retina reveals those distinct processing layers.
(Courtesy of Webvision http://webvision.med.utah.edu/ at the Moran Eye Center.)

    



proportional to the applied light inten-
sity, except for an approximately 90°
phase advance, which reflects the fact
that the cell is sensitive to the rate of
change of the light intensity, and a
negative cutoff due to the fact that the
firing rate cannot drop below zero—
see Figure 3(c). According to the
rate-code hypothesis, the multitrial
rate histogram fully characterizes the
information conveyed by neural spike
trains. (Of course, the brain cannot
perform a multitrial average, but it is
assumed that the brain can extract
similar information in real time by
combining low-pass filtering and
information from many cells.)

About 10 years ago, Wolf Singer’s
laboratory in Germany reported that
retinal neurons also use the relative
timing of spikes to encode informa-
tion about visual stimuli that is not
conveyed by their local firing rates
(Neuenschwander and Singer 1996,
Neuenschwander et al. 1999). Unlike
the previous example, which involved
an intracellular recording from a sin-
gle cell, the data from Singer’s labora-
tory consists of spike trains from two
retinal neurons recorded simultane-
ously in response to a sustained light
stimulus, either two separate short
bars or a single long bar (Figure 4). In
both cases, the edges of the bar stim-
uli were positioned over the receptive
centers of the recorded cells so that,
locally, the stimulation was approxi-
mately the same regardless of whether
the stimulus consisted of one or two
bars. Another difference from the pre-
vious example is that the spike trains
in the Singer experiment were record-
ed with extracellular electrodes, which
do not permit examination of the cor-
responding membrane potentials.
However, spike trains recorded imme-
diately outside the cell can be ana-
lyzed for temporal structure both indi-
vidually and by pairs.

Correlation functions constructed
from the individual spike trains
revealed that the outputs of both reti-

nal neurons were modulated by peri-
odic oscillations—see the small
boxes in Figures 4(a) and 4(b). The
oscillations elicited by separate light

bars were not phase-locked, as indi-
cated by the relative absence of cor-
relations between the two spike trains
when stimulated by separate bars—
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(a)  No Stimulus

(b)  Two Small Spots

(c)  Two Large Spots

(d)  One Large Spot

Figure 2. Retinal Responses to Light Stimuli
The gray boxes show two groups of retinal photoreceptors (black dots) exposed to
spots of light during four experiments. At right are the outputs of the two groups of
ganglion cells activated by the two groups of photoreceptors. (a) With no light stim-
ulus, the outputs are random spikes. (b) When each group of photoreceptors is
exposed to a small spot of light, the average firing rate of the overlying ganglion
cells increases in proportion to the ratio of the intensity of the spot to the intensity
of the region immediately surrounding the spot, but the spikes still occur more or
less randomly. (c) As the spot size increases, the firing rate decreases somewhat,
and the spikes bunch up. However, the bunches are not synchronized. (d) When the
spot size is large enough to cover both groups of photoreceptors, the bunches
become synchronized.

    



114 Los Alamos Science Number 29  2005

Models of the Retina with Application to the Design of a Visual Prosthesis

Figure 3. Responses of a Single
Retinal Ganglion Cell 
A motion-sensitive ganglion cell from
a mammalian retina was stimulated by
a spot of light whose intensity varied
sinusoidally in time. (a) The intensity
of the light spot is shown as a func-
tion of time. (b) The subthreshold
membrane potential recorded at the
soma (cell body) consists of action
potentials, or spikes, riding on top of
an approximately sinusoidal modula-
tion. Only the spikes are transmitted
to relay nuclei in the brain. (c) A
response histogram is constructed
from spikes accumulated over many
identical stimulus trials, showing that
the average firing rate is approximate-
ly proportional to the applied stimulus
intensity except for a phase shift and
a lower cutoff at 0 Hz. (Dacey and Lee 1994.

Reprinted with permission from Nature.)

Figure 4. Responses of Two Retinal Ganglion Cells
Two cat-retina ganglion cells separated by 6 degrees are monitored by electrodes Re1 and Re2, respectively. Spike trains gener-
ated in response to rectangular light stimuli were recorded simultaneously from each electrode, and autocorrelation and cross-
correlation histograms were computed. (a) When two distinct rectangular light stimuli are used, strong oscillations are present
in the autocorrelation histogram of each ganglion cell, but the cross-correlation histogram between the two ganglion cells is
essentially flat. The sharp peaks in the autocorrelation histograms correspond to the spike bunching in Figures 2(c) and 2(d).
(b) When a single rectangular stimulus that connects the region between the cells is used, the oscillations in firing rate of the
two ganglion cells become strongly phase locked, generating a strong oscillation in the cross-correlation histogram. The cross-
correlation oscillation corresponds to the synchronization of the spike bunches in Figure 2(d). (Neuenschwander 1996. This figure was

redrawn courtesy of Nature.)
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see the large box in Figure 4(a). On
the other hand, the evoked oscilla-
tions were tightly phase-locked when
activated by a single bar, as indicated
by the strong periodic modulations in
the corresponding correlation func-
tion illustrated in the large box in
Figure 4(b). Thus, the timing of reti-
nal ganglion-cell spikes, especially
with respect to the phase differences
between the oscillatory responses of
separate groups of ganglion cells, can
convey information relevant to the
spatial separation or spatial binding
of visual features.

A Computer Model

We constructed a computer model
of the retina (Figure 5) to study how
temporal codes in the retina might be
generated and what types of visual
information such codes might con-
vey. Very few circuits in the central
nervous system have been complete-
ly characterized, and the circuits of
the retina are no exception. However,
enough is known about retinal anato-
my and physiology to allow the con-
struction of a model that accounts for
many aspects of experimentally
recorded light responses in a manner
consistent with general patterns of
neuronal connectivity found in most
vertebrate species. Moreover, by
requiring the model to account for a
wide range of experimental data, we
were able to infer some aspects of
the unknown anatomy and physiolo-
gy. In particular, by increasing the
range of observed phenomena
explained by the model, we were
able to eliminate alternative imple-
mentations that were inconsistent
with published recordings. 

The model consisted of five dis-
tinct cell types illustrated in Figure
5(a): bipolar cells, three classes of
amacrine cells, corresponding to the
small, large, and polyaxonal subtypes,
and ganglion cells. Bipolar cells are
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Figure 5. Computer Model of the Retina
(a) Our computer model consisted of five cell types: bipolar (BP) cells, small (SA),
large (LA), and polyaxonal (PA) amacrine cells, and alpha ganglion (GC) cells,
arranged in a 32 ×× 32 square mosaic with wrap-around boundary conditions.
Although this side view of one of the mosaic’s units shows only two BPs, there
were actually four BPs. Light stimuli were simulated by injecting currents directly
into the BPs. (Photoreceptors were not included in the model.) The inhibitory con-
nections can be organized into three categories: Feedforward and feedback inhibi-
tion. Excitatory synapses from BPs were balanced by a combination of reciprocal
synapses and direct inhibition of the GCs, mediated by the nonspiking amacrine-
cell types. Serial inhibition. The three amacrine-cell types regulated each other
through negative feedback loops. Resonance circuit. The PAs were excited locally
through electrical synapses with GCs, and their axons gave rise to widely distrib-
uted inhibition that contacted all cell types, but most strongly the GCs and other
PAs. Not all connections present in the model are shown. (b) A simplified schematic
diagram of the computer model shows how a combination of local excitation (trian-
gles) carried by gap junctions (resistors) and long-range inhibition (empty circles)
carried through axon-bearing amacrine cells (orange dotted lines and filled black
circles) produced physiologically realistic oscillations dependent on stimulus size.
(Reprinted with the permission of Cambridge University Press.) 

(a)

(b)

                  



relay neurons that receive synaptic
input from photoreceptors (not
shown) and provide the principal
excitatory drive to the other neuron
types. The bipolar cells are therefore
critical elements in the “vertical”
pathway representing the main direc-
tion of information flow from the
photoreceptors to the optic nerve. On
the other hand, amacrine cells medi-
ate lateral interactions that are essen-
tial for processing and encoding visu-
al signals. Indeed, without amacrine-
cell interactions, corresponding to the
“horizontal” pathway, the output of
the retina would simply replicate the
activity across the photoreceptor
array. Nearly 30 different kinds of

amacrine cells have been described,
and it would not have been possible
to include them all in the model.
Instead, we included only the mini-
mum number of amacrine-cell types
necessary to account for the basic
features of retinal light responses, as
well as for the synchronous oscilla-
tions evoked by large stimuli.

While the circuitry incorporated
into the model is somewhat compli-
cated, the connections can be
grouped into three major categories: 

Excitation. The bipolar cells,
which relayed visual signals from 
the photoreceptors to all the other
cell types, were the only source of
excitation in the model. 

Local inhibition. The model
amacrine cells made feedforward
inhibitory synapses onto the gan-
glion cells and feedback inhibitory
synapses onto the bipolar cells and
serially inhibited each other. These
local inhibitory synapses acted to
increase the dynamical range of the
model retina, by negative feedback,
and further contributed to shaping
light-evoked activity so as to amplify
the responses to both spatial and
temporal contrast. 

Long-range axon-mediated feed-
back. The polyaxonal amacrine cells
received local excitation from gan-
glion cells by electrical synapses or
gap junctions and, in turn, made
long-range inhibitory connections
onto all cell types. This delayed neg-
ative feedback circuit accounted for
the generation of oscillatory respons-
es in the model retina and has been
redrawn in Figure 5(b) to emphasize
the circuit’s essential components
and their interconnections. Further
details of the model, particularly its
ability to account for experimental
data as well as its numerical stability
and robustness to parameter varia-
tion, are available elsewhere
(Kenyon et al. 2004a, Kenyon et al.
2004b, Kenyon et al. 2003a, Kenyon
et al. 2003b).

Oscillations

To assess the stimulus-evoked
oscillations in the retinal model, cor-
relations were computed between the
spike trains arising from all pairs of
ganglion cells activated by a large
spot, and the results were combined
into an averaged correlation meas-
ure—refer to Figure 6(a). The ampli-
tude, frequency, and persistence of the
periodic modulations in the averaged
correlation function obtained from the
retinal model were qualitatively simi-
lar to those observed experimentally
in recordings of cat ganglion cells
responding to large, high-contrast
spots, as illustrated in Figure 6(b).
For both the cat retina and the retinal
model, the correlation amplitude falls
off with increasing delay, eventually
returning to approximately baseline
levels after several cycles of the
underlying oscillation. In both sets of
data, the phases of the underlying
oscillations drift randomly over time,
so that firing activity becomes uncor-
related over sufficiently long delays.
This time drift is a fundamentally
nonlinear phenomenon arising from
the threshold nature of spike genera-
tion. In contrast, the phase of a linear
harmonic oscillator is always fixed
relative to the stimulus onset. The
retinal model thus captures an essen-
tial nonlinear property of the biologi-
cal circuitry. Moreover, the good qual-
itative agreement between theory and
experiment implies that the free
parameters in the model, particularly
those involving the axon-mediated
feedback circuit, were likely to be rea-
sonably close to their true physiologi-
cal values. Other comparisons with
physiological data were used to verify
additional aspects of the model.

The retinal model was also able to
account for the experimentally
observed size dependence of retinal
oscillations (Figure 7). Specifically,
the oscillations evoked by stimuli of
various sizes in our retinal model
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Figure 6. Light-Evoked
Oscillations in the Retinal Model
(a) The average correlation function of
the retinal model’s output for pairs of
ganglion cells exhibits an oscillation
whose amplitude, frequency, and dura-
tion are similar to those of (b), the cor-
relation function for experimentally
recorded spike trains from cat retina
cells in response to an analogous
stimulus.

            



were similar to those measured from
the cat retina. In both sets of data,
small stimuli evoked little or no oscil-
latory response, whereas large stimuli
evoked oscillations with very large
amplitudes. Because the axon-mediat-
ed feedback was spread out over a
wide retinal area, only large stimuli
could evoke strong oscillatory respons-
es. The notion that oscillations are
associated with large stimuli led us to
put forward a novel hypothesis about
the types of visual signals encoded in
the periodic temporal structure of reti-
nal spike trains. We discuss this
hypothesis in more detail below. 

The model also accounted for a
high-frequency resonance observed in
the responses of certain retinal neurons
to temporally modulated stimuli
(Figure 8). The temporal modulation
transfer function (tMTF) measures

how strongly the output of a system is
modulated as a function of the fre-
quency of a sinusoidal input.
Harmonic or oscillatory systems typi-
cally exhibit a resonance frequency, at
which the output of the system can be
driven to relatively large amplitudes.
The presence of high-frequency oscil-
lations in retinal light responses sug-
gests that there will be a corresponding
resonance in the tMTF, given by the
amplitude of the sinusoidal modulation
in the ganglion-cell firing rate when
plotted as a function of the frequency
of the applied stimulus. As expected,
both the cat and model retinas exhibit
sharp resonance peaks in their tMTFs
at frequencies above 60 hertz, at
which frequency value oscillatory
responses are also observed.
Moreover, the model accounted not
only for the resonance itself but also

for the associated kink in the phase-
response curve, which plots how much
the phase of the output modulation is
retarded or advanced relative to the
sinusoidal input. Such kinks are not
present in the phase-response curves
of simple harmonic oscillators. Using
our computer model, we were able to
show that the kink in the phase-
response curve obtained from retinal
ganglion cells was due to entrainment.
When driven at relatively low modula-
tion frequencies, the oscillations pro-
duced by retinal circuitry, whose phase
drifts randomly over time, quickly
become independent of the phase of
the driving stimulus. As the frequency
of the driving stimulus approaches the
resonance frequency, however, the two
oscillations become entrained, causing
an abrupt advance in the phase-
response curve. Such resonances may
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Figure 7. Stimulus-Size Dependence of Retinal Oscillations
(a) The correlation function computed between experimentally recorded spike trains from cat retina cells exhibits a strong
increase in oscillatory activity with increasing stimulus size. (b) The correlation function computed for the oscillations produced
by our retinal model exhibits a similar size dependence. (Experimental data from Neuenschwander (1996). Redrawn courtesy of Nature.)
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Figure 9. Stimulus-Selective
Oscillations
(a) Two bar-shaped light stimuli are
shown in relation to the receptive field
centers of four simultaneously recorded
ganglion cells. Cross-correlation his-
tograms were computed during the
plateau portion of the responses for
pairs of ganglion cells at opposite ends
of the same bar or at opposing tips of
separate bars. All ganglion cell pairs
were separated by 7 diameters. The
cross-correlation histograms were com-
puted for pair 1,2 from the upper bar (b),
pair 2,3 from the two separate bars (c),
and pair 3,4 from the lower bar (d). The
histograms exhibit significant oscilla-
tions only for pairs stimulated by the
same bar.
(Courtesy of Wolf Singer and colleagues.)

Figure 8. Temporal Modulation
Transfer Functions (tMTFs)
(a) The tMTF recorded from cat-retina
ganglion cells is obtained by plotting
the magnitude of the fundamental
Fourier component in the response his-
togram as a function of the temporal
modulation frequency of the applied
stimulus. The maximum response
occurs at a broad low-frequency reso-
nance, between 10 Hz and 20 Hz, but
there is also a prominent high-frequen-
cy resonance at around 70 Hz. (b) The
phase-response curve corresponding to
the data shown in (a) is plotted as a
function of temporal modulation fre-
quency. The phase-response curve
exhibits a prominent kink at frequen-
cies near the rising phase of the reso-
nance peak. (c) A similar resonance is
present in the tMTF recorded from gan-
glion cells in the retinal model in
response to a temporally modulated
spot. (d) Likewise, the phase-response
curve of the model ganglion cells also
exhibits a kink near the onset of the
resonance peak. The kink is caused by
entrainment of the retinal oscillations
by the applied stimulus.
(Reproduced from the Journal of General Physiology,

1987, Vol. 89, pp. 599–628, by copyright permission of

The Rockefeller University Press.)

      



also be relevant to the effective opera-
tion of a retinal prosthesis by
enabling strategies for selectively
activating certain types of retinal neu-
rons at the characteristic frequencies
of stimulation.

Finally, the retinal model was able
to reproduce the stimulus selectivity
of retinal oscillations first reported by
Wolf Singer’s laboratory, as outlined
above. By examining the relative tim-
ing of spikes produced by retinal gan-
glion cells responding to either the
same or to different objects, we were
able to show that model elements
activated by the same large object
were strongly correlated, or phase
locked, by a common underlying
oscillation at a frequency of approxi-
mately 100 hertz (see Figure 9). Pairs
of model retinal neurons activated by
different objects, however, were not
correlated; that is, the phases of their
underlying oscillations varied ran-
domly with respect to each other.
Thus, our retinal model captures the
interesting property of biological neu-
rons that their evoked oscillations in
responses to large visual features are
stimulus specific and are only phase
locked for cells responding to the
same contiguous object. The above
results illustrate how the retinal
model was able to account for many
of the main experimentally observed
aspects of oscillatory phenomena.

What Do Oscillations
Encode?

Having established the biological
plausibility of the retinal model, we
then used computer simulations to
explore what information stimulus-
specific oscillations might convey to
the brain. Because our model is con-
sistent with the known anatomy and
physiology of the cat retina, the model
can provide a useful tool for investi-
gating how information can be encod-
ed in the temporal structure of spike

trains propagating down the optic
nerve. Based on the stimulus selectivi-
ty of retinal oscillations, as well as
their observed size dependence, a col-
lection of disconnected spots will elic-
it only weak periodic modulations in
optic-nerve fibers, whereas a single
large stimulus will elicit strong period
modulations. To test this idea, we
exposed our computer-model array of
32 × 32 ganglion cells to two different
light stimuli. The first stimulus was a
large, square spot covering 25 con-
tiguous clusters of cells—refer to
Figure 10(a). Each cluster consisted
of 2 × 2 cells. For this stimulus, the
power spectrum of the spike trains
from a single cluster exhibited a large,
sharp peak at around 100 hertz.
However, when the array was exposed
to 25 small, isolated spots, each of
which covered exactly one cluster but
otherwise elicited approximately the

same total number of spikes per time
interval, there was only a small hump
in the power spectrum, as shown in
Figure 10(b). These results suggest
that the periodic temporal structure in
the spike trains obtained from small
clusters of neighboring neurons
encodes the overall size of the object
to which the clusters respond.

To investigate the above hypothe-
sis, we were guided by two princi-
ples: (1) Because it takes us only a
fraction of a second to form a visual
impression, the information con-
veyed by stimulus-specific oscilla-
tions must be available on short,
physiologically meaningful time
scales—roughly a few hundred mil-
liseconds. (2) Because the spatial
convergence of retinal neurons onto
target cells in the brain is rather low,
with each target cell receiving input
from only a few retinal neurons, the
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Figure 10. See Globally, Spike Locally
We exposed 25 clusters of ganglion cells in our computer-model array of 32 ×× 32
cells to two different high-contrast light stimuli and computed the power spectrum
from the output of a single cluster (shown in red) for each exposure condition. Each
cluster consisted of 2 ×× 2 neighboring ganglion cells. The power spectra (left) were
normalized by the total average firing rate for each exposure condition (right). (a)
For a cluster that was part of a large illuminated area, the power spectrum peaked
sharply between 60 Hz and 120 Hz. (b) For a cluster illuminated in isolation, the
power spectrum exhibited only a small hump.

                    



information conveyed by stimulus-
specific oscillations must be avail-
able locally in the firing activity of a
similar number of neighboring cells.
We therefore used the retinal model
to quantify the information conveyed
about the global properties of a stimu-
lus, in this case the total size of the
object, by a 2 × 2 neighborhood of
retinal output neurons in a few hun-
dred milliseconds. At the same time,
having received data from Wolf
Singer’s laboratory recorded from
output neurons in the cat retina under
analogous experimental conditions,
we were able to test directly the pre-
dictions of our retinal model.

One of our studies tested our ability
to determine if a group of neighboring
cells was responding to a small or a
large object from the group’s local fir-
ing activity alone. In Figure 11, we
plot the results of this study in terms
of the “accuracy of size discrimina-
tion,” which was equal to the fraction
of trials in which the total size of the

stimulus could be correctly inferred
from the local firing activity. Random
events were added to the model spike
trains to ensure that the firing rate did
not change as a function of stimulus
size. The only cue available from the
local firing activity regarding the total
size of the stimulus was therefore the
amplitude of the synchronous oscilla-
tions. Our results showed that, in
model spike trains 300 milliseconds
long, using as few as four spike trains
from a small neighborhood (2 × 2
cells), nearly perfect accuracy can be
achieved. The accuracy for the experi-
mentally recorded spike trains was
slightly lower, possibly reflecting to
some extent the suboptimal recording
conditions in which several different
ganglion cell types contributed to the
multiunit response. Overall, our mod-
eling results imply that there is a
tradeoff between the number of cells
included in the analysis and the total
time allowed for accomplishing the
size-discrimination task. Specifically,

as more cells were included in the
analysis, shorter periods were required
to achieve the same accuracy.

Why would it be important for reti-
nal neurons to convey information
about stimulus size in their local fir-
ing activity? Studies of a frog’s retina
may provide the answer. Tachibanna’s
laboratory in Japan has shown that the
frog retina has specialized neurons,
called dimming detectors, that exhibit
strong synchronous oscillations when
activated by a large dimming object
but do not exhibit such oscillations
when activated by a small dimming
object (Ishikane et al. 1999). To a
frog, a small dimming spot could be a
fly or other food source, but a large
dimming spot is more likely to be a
bird or other dangerous predator. In
this situation, one can easily appreci-
ate why size matters. n
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Figure 11. Size Discrimination
A Bayes discriminator was used to classify light spots as either “smaller” or “larg-
er” from the single-trial oscillatory activity of (a) cat retina ganglia or (b) the ganglia
in our retinal computer model. For the multiunit spike trains recorded from cat reti-
na ganglia, the percentage of correctly classified trials ranged from ~73% to ~87%
as the length of the multiunit spike train segment increased from 50 to 300 ms. The
percentage of correctly classified trials using multiunit spike trains from the retinal
model improved with longer analysis windows and as more ganglion cells were
included in the spike record.
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We have begun developing a three-
dimensional (3-D) model of the retinal
extracellular space. Existing software,
originally developed for modeling the
flow of ground water through porous
material [(Unsworth et al. 1989),
(Travis and Chave 1989)], has been
adapted to calculate the potential gra-
dients produced by an arbitrary distri-
bution of stimulating electrodes. The
flow of water in porous media (that is,
sedimentary rock) and the flow of cur-
rent through the extracellular space are
mathematically identical problems,
allowing powerful software tools
developed in one context to be applied
to the other. Our basic strategy is to
avoid the fully interacting problem
that requires solving for the intercellu-
lar and extracellular potentials simulta-
neously. Instead, we take advantage of
the fact that the ephaptic, or incidental
coupling between retinal neurons via
the extracellular space is small and
that any significant extracellular
potential gradients will be due almost
entirely to external stimulation.
Prosthetic stimulation can therefore be
modeled in two distinct steps: (1) cal-
culate the extracellular potentials pro-
duced by the applied currents and (2)
compute how the resulting gradients
act upon dendritic and axonal
processes within the retina. In princi-
ple, the same technology could be
used in reverse; the normal light-
evoked responses of retinal neurons
could be calculated before hand and
the resulting membrane currents could
be used as sources to estimate local
field potentials. Such technology could
eventually be useful for connecting
realistic simulations of retinal circuits
to clinical measures such as the elec-
troretinogram. 

As preliminary data, we have
developed a simplified model of the
retina and associated structures in
which the various anatomical ele-

ments, consisting of the vitreous,
retina and retina pigment epithelium
(RPE)/choroid, as well as the multi-
electrode array itself, were represented
as rectangular blocks (Figure A). The
bulk conductivity of each element was
based on published values (Geddes
and Baker 1967), with the bulk con-
ductivity of the multielectrode array
set to zero. The computer model was
used to calculate the extracellular
potential gradients produced by a
1 microampere anodic current pulse
passed through a single stimulating
electrode, 10 microns in diameter,
located on the vitreous surface. The
return electrode was placed in the vit-
reous cavity 400 microns away along
a line perpendicular to the retinal sur-
face. It is well established that

cathodic current pulses are much more
effective for stimulating retinal neu-
rons, but for modeling the spatial dis-
tribution of extracellular currents, the
overall sign is irrelevant. 

In the absence of an insulating bar-
rier above the retina, transverse bipo-
lar stimulation produced a dipole field
that was nearly mirror symmetric, with
the slight deviations arising from the
conductivity differences of the various
tissue components—Figure A(1). The
spatial profiles of the extracellular
potentials parallel to the retinal surface
were examined as a function of depth
from the stimulating electrode—
Figure A(2). At a depth of 50 microns,
the maximum value of the extracellu-
lar potential directly underneath the
electrode was just under 6 millivolts,

Figure A. The Influence of Both Anatomical and Non-Anatomical
Structures of the Distribution of Extracellular Currents
(1) This contour plot is of extracellular potentials due to dipole stimulation of the
retina and associated structures (see labels). (2) Profiles of extracellular potentials
are shown at three different depths, 50, 100, and 150 µ. Panels (3) and (4) show the
same organization as (1) and (2) with the addition of an insulating block represent-
ing the prosthetic multielectrode array itself.

Modeling Stimulation by a Retinal Prosthesis
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and fell off laterally with a length con-
stant on the order of 100 microns.
Deeper in the retina, the extracellular
potential fell off more gradually as the
radial component away from the elec-
trode became smaller in the lateral
direction.

A prosthetic device would not con-
sist of a single pair of electrodes,
however, but of a multielectrode
array contained in an insulating pack-
age. We therefore used the computer
model to examine how a large insula-
tor affixed to the vitreous surface
would affect current flow within the
retina—Figures A(3) and A(4). Our
results show that by forcing more of
the current into the retina, a large
non-conducting barrier can substan-
tially enhance the effects of prosthetic
stimulation. Inserting a representation
of the prosthetic device into the 3-D
model approximately doubled the
extracellular potential gradients pro-
duced by the same 1microampere
current pulse applied previously.
These results illustrate the general
principle of how the 3-D geometry of
the retina and associated structures,
as well design of the prosthetic
device itself, can have a large impact
on the spatial distribution of exter-
nally applied currents.

Computer models can also be used
to investigate how cellular properties,
such as dendritic morphology and ori-
entation, influence responses to pros-
thetic stimulation. As a preliminary
step, we examined the changes in
membrane potential produced by a
1-microampere cathodic current as a
function of orientation, either verti-
cal or horizontal—Figure B. A 50-
micron passive segment, representing
a bipolar cell axon or ganglion cell
dendrite, was centered 75 microns
from the vitreous surface directly
underneath the stimulating electrode.
When the passive cable segment was
oriented vertically, as would likely be
the case for bipolar cell axons, there
was approximately a 1 millivolt depo-

larization at the proximal tip closest
to the electrode. On the other hand,
when the same passive segment was
oriented horizontally, as would be
predominantly the case for ON gan-
glion cell dendrites, there was virtu-
ally no change in the membrane
potential. 

The strong influence of orientation
is a direct consequence of the fact that
neural processes are activated by gra-
dients in the extracellular potential and
are insensitive to the average magni-
tude, or constant offset. For transverse
stimulation in which the dipole axis is
perpendicular to the retinal surface,
vertically oriented processes lay across

equipotential contour lines and thus
along the maximum gradient.
Horizontally oriented processes, on
the other hand, lie mostly parallel to
equipotential contour lines and thus
experience minimal gradients along
their length. The dendrites of ON gan-
glion cells tend to be oriented laterally
and are therefore likely to have higher
activation thresholds than vertically
oriented processes. Ganglion cell
axons are also oriented in a predomi-
nantly lateral direction and thus are
less strongly activated by transverse
currents, but this effect is potentially
countered by their closer proximity to
the electrode array. 

Finally, if an anodic current pulse
had been applied instead, the proximal
tip of the vertically oriented segment
would have been hyperpolarized
rather than depolarized. It has been
reported that bipolar cell activation
thresholds are lower for transverse
cathodic currents than for equivalent
anodic currents (Jensen et al. 2003).
Our simulations provide insight into
this phenomenon. The passive cable
segments used in our preliminary
study were electronically short and
thus can be treated as approximately
isopotential. The extracellular poten-
tial, on the other hand, grows more
negative in the direction of the cath-
ode, here assumed to be on the vitre-
ous surface. At the proximal tip of a
vertically oriented process, the extra-
cellular potential will be most negative
and thus closest to the intracellular
potential (assumed to be uniform),
causing the membrane potential at that
point to be depolarized from the rest-
ing potential. At the distal tip, on the
other hand, the difference between the
intracellular and extracellular potential
is maximal, and the corresponding
membrane potential is hyperpolarized.
This example shows how the stimula-
tion protocol must be designed in tan-
dem with information about cellular
morphology.

Figure B. Effects of Orientation 
Shown here is the change in membrane
potential along a 50-µ passive cable in
response to a 1-µA current. A vertically
oriented segment experiences a maxi-
mum depolarization of nearly 1 mV at
its proximal tip, while a horizontally ori-
ented segment is virtually unaffected by
the stimulus. Cable centers were 75 µ
from the electrode.

          


